将1Cr18Ni9奥氏体不锈钢加热到1050 ~ 1150℃,固溶碳的固溶度为0.10 ~ 0.15%,然后淬火。经固溶处理的1Cr18Ni9钢是一种碳过饱和体,不会产生晶间腐蚀。在700 ~ 800℃的温度范围内,碳的固溶体不超过0.02%,过饱和碳将从奥氏体中完全或部分析出。这时,碳会扩散到晶界和结合铁和铬在晶界形成硬质合金Cr23C6铬含量高、消耗铬在晶界面积,和铬粒内扩散速度慢得多比在晶界,在晶界区消耗的铬没有时间补充,因此在晶界区形成铬贫区。对于不锈钢来说,由于晶界钝化状态的破坏,晶界上析出的碳化铬周围的贫铬区成为阳极区,而碳化铬和晶粒处于钝化状态成为阴极区。在腐蚀介质中,晶界和晶粒形成活化的钝化微胞。电池阴极大,阳极面积比小,加速了晶界区域的腐蚀。
铬、镍、钼、硅:Cr、Mo含量的增加会降低C的活性,降低晶体腐蚀的倾向;Ni、Si等不形成碳化物的元素会提高C的活性,降低C在奥氏体中的溶解度,促进碳化物的析出。
晶间腐蚀:金属材料在特定腐蚀介质中沿晶界发生的局部选择性腐蚀。晶界是不同晶粒之间的边界。由于晶粒有不同的取向,原子在结处的排列必须逐渐从一个取向转变为另一个取向。因此,晶界实际上是一种“表面”不完整的结构缺陷。由于晶格畸变的增加,晶界处原子的平均能量高于晶内。较高的能量称为晶界能。纯金属晶界在腐蚀介质中的腐蚀速率比晶体的腐蚀速率快,这是因为晶界的能量高,原子处于不稳定状态。
晶界吸附理论:超低碳不锈钢经1050℃固溶处理后,在强氧化介质中也会发生晶间腐蚀。这时,铬差或不锈钢不能采用σ相析出理论。实验表明,当p杂质达到100ppm或Si杂质达到1000 ~ 2000ppm时,它们会在高温区晶界处吸附分离。这些杂质在强氧化剂介质的作用下会溶解,在晶界处产生选择性晶间腐蚀。该钢经敏化处理后不会出现晶间腐蚀,因为碳和磷形成了磷碳化物,限制了磷向晶界的扩散,降低了杂质在晶界的偏析,消除或减弱了对晶间腐蚀的敏感性。